Skip to main content

blood-brain barrier (BBB) Device

Researchers fabricated an artificial device reproducing a 1:1 scale model of the blood-brain barrier (BBB), the anatomical and functional structure that protects the central nervous system from external substances, such as contaminants, but also drugs when they are injected intravenously into the body. The device will be fundamental for studying new therapeutic strategies to overcome blood-brain barrier and treat brain diseases.

Researchers at IIT-Istituto Italiano di Tecnologia fabricated an artificial device reproducing a 1:1 scale model of the blood-brain barrier (BBB), the anatomical and functional structure that protects the central nervous system from external substances, such as contaminants, but also drugs when they are injected intravenously into the body. The device, which is a combination of artificial and biological components, will be fundamental for studying new therapeutic strategies to overcome blood-brain barrier and treat brain diseases, such as tumours.

The device is described in a paper published today by the scientific journal Small and highlighted by the journal inside cover: it is a microfluidic device that combines artificial components made with 3-D advanced microfabrication techniques (two-photon lithography) and biological ones, that is endothelial cells (the cells covering blood vessels).
For more details visit:
https://materialscience.materialsconferences.com



Comments

Popular posts from this blog

Novel aspects of Nanotubes

A nanotube is a tubular particle made out of an extensive number of carbon atoms. Nanotubes having a wide range of application in various fields such as Photovoltaic cells , targeted drug delivery, automobile industries, aerospace so on.  Now as per the recent studies, Researchers state that the weak van der Waals forces between the inner surface of the nanotube and the water molecules are strong enough to snap the oxygen and hydrogen atoms into place. In the case of a two-dimensional ice, the molecules freeze regardless of the temperature and research provides valuable insight on ways to leverage atomic interactions between nanotubes and water molecules to fabricate nanochannels and energy-storing nanocapacitors. Scientists built molecular models of carbon and boron nitride nanotubes with adjustable widths. They found boron nitride is best at obliging the state of water when the nanotubes are 10.5 angstroms wide. The scientists definitely realized that hydrogen particles in

Replacement of lithium-ions by sodium-ions for high capacity rechargeable batteries.

Lithium-ion batteries (LIB) are rechargeable and are generally utilized in workstations, cell phones and completely electric vehicles. The electric vehicle is a critical innovation for battling contamination in urban areas and understanding a time of clean maintainable transport. Anyway, lithium is costly and assets are unevenly dispersed over the planet. A lot of drinking water is utilized in lithium extraction and extraction strategies are ending up more vitality serious as lithium request rises an “own goal” regarding manageability. With the consistently expanding interest for electric cars, the requirement for rechargeable batteries is rising significantly, so there is a distinct fascination in finding a charge transporter other than lithium that is modest and effortlessly open. Sodium is cheap and can be found in seawater so is practically boundless. In any case, sodium is a bigger particle than lithium, so it isn't conceivable to just "swap" it for lithium i

Prospective tenders of carbon nano tubes

Carbon nanotubes are large molecules of carbon that are long and thin and moulded like tubes, around 1-3 nanometres (1 nm = 1 billionth of a meter) in diameter, and hundreds to thousands of nanometers long. As individual particles, nanotubes are 100 times more grounded than-steel and one-sixth its weight. There are various carbon nanotubes properties and applications which take the full favourable position of CNTs interesting properties of aspect ratio, mechanical quality, electrical and thermal conductivity. There has been substantial practical interest in the conductivity of CNTs . CNTs with particular arrangements of M and N (structural parameters indicating how much the nanotube is twisted) can be highly conducting, and hence can be considered as metallic. Their conductivity has been proved to be a function of their diameter as well as their chirality (degree of twist). CNTs can be either semiconducting or metallic in their electrical behaviour. Use of silicon coated carbon