Skip to main content

blood-brain barrier (BBB) Device

Researchers fabricated an artificial device reproducing a 1:1 scale model of the blood-brain barrier (BBB), the anatomical and functional structure that protects the central nervous system from external substances, such as contaminants, but also drugs when they are injected intravenously into the body. The device will be fundamental for studying new therapeutic strategies to overcome blood-brain barrier and treat brain diseases.

Researchers at IIT-Istituto Italiano di Tecnologia fabricated an artificial device reproducing a 1:1 scale model of the blood-brain barrier (BBB), the anatomical and functional structure that protects the central nervous system from external substances, such as contaminants, but also drugs when they are injected intravenously into the body. The device, which is a combination of artificial and biological components, will be fundamental for studying new therapeutic strategies to overcome blood-brain barrier and treat brain diseases, such as tumours.

The device is described in a paper published today by the scientific journal Small and highlighted by the journal inside cover: it is a microfluidic device that combines artificial components made with 3-D advanced microfabrication techniques (two-photon lithography) and biological ones, that is endothelial cells (the cells covering blood vessels).
For more details visit:
https://materialscience.materialsconferences.com



Comments

Popular posts from this blog

Nano indentation for the determination of visco-elastic properties of polymer

For a few periods, circular space has been utilized with the end goal of materials qualities, for example, versatile modulus, hardness and flexible plastic properties. One of the primary drivers for the prevalence of these estimations was that with a spherical indenter and adequately low loads basically flexible distortions could be gotten. The contact issue can be explained generally just by settling understood Hertz conditions and the flexible constants of the material are easily figured. Such thought was extremely productive likewise for assurance of visco-elastic properties of polymers , where low distortions would prompt concealment of the irreversible stream of the material and the visco-versatile properties of the polymer could in this manner be resolved. This would be an incredibly preferred standpoint over as often as possible performed space with Berkovich indenter , where promptly the points of confinement of plastic stream are come to and the distortion is unavoidabl...

Novel aspects of Nanotubes

A nanotube is a tubular particle made out of an extensive number of carbon atoms. Nanotubes having a wide range of application in various fields such as Photovoltaic cells , targeted drug delivery, automobile industries, aerospace so on.  Now as per the recent studies, Researchers state that the weak van der Waals forces between the inner surface of the nanotube and the water molecules are strong enough to snap the oxygen and hydrogen atoms into place. In the case of a two-dimensional ice, the molecules freeze regardless of the temperature and research provides valuable insight on ways to leverage atomic interactions between nanotubes and water molecules to fabricate nanochannels and energy-storing nanocapacitors. Scientists built molecular models of carbon and boron nitride nanotubes with adjustable widths. They found boron nitride is best at obliging the state of water when the nanotubes are 10.5 angstroms wide. The scientists definitely realized that hydrogen particle...

Stretchy Circuit: A Hope For The Future

Specialists have made another cross breed conductive material - part versatile polymer, part fluid metal - that can be twisted and extended freely. Circuits made with this material can take most two-dimensional shapes and are likewise non-harmful. "These are the principal adaptable hardware that are on the double exceptionally conductive and stretchable, completely biocompatible , and ready to be manufactured advantageously crosswise over size scales with miniaturized scale include exactness.  “ It's assumed that they will have wide applications for both wearable hardware and implantable gadgets." The material that the specialists designed is known as a metal-polymer conveyor (MPC), purported in light of the fact that it is a mix of two segments with altogether different yet similarly alluring properties. The metals for this situation are not natural conductive solids, for example, copper, silver, or gold, but instead gallium and indium, which exist as thick,...